SureScreen Health

VITAMIN B12

WHITEPAPER

Contents

What is vitamin B ₁₂ ?	Page 4
Function	Page 5
Benefits and deficiencies	Page 5
Toxicity	Page 6
The Absorption of Vitamin B_{12}	Page 6
The Role of Vitamin B12 in the Body	Page 8
Vitamin B ₉	Page 10
Vitamin B ₆	Page 10
Testing Vitamin B ₁₂ Levels	Page 10
Other Ways to Test for $B_{\scriptscriptstyle 12}$	Page 11
Where to get VItamin B ₁₂	Page 11
Recommended Dosages	Page 13
Who is at Risk of Vitamin ${\rm B}_{\rm 12}$ Deficiencie	s? Page 14
Summary	Page 15

When it comes to B vitamins, it's easy to presume that they are all very similar.

This is not the case, vitamin B₁₂ is one of the most unique essential nutrients that exists and is regarded as a common deficiency, particularly amongst older people whose absorption capabilities decline with age. It is estimated that 1 in 10 over 75s are deficient in B₁₂.⁽¹⁰⁷²⁾ Knowing what makes vitamin B₁₂ unique from other B vitamins can help you know how and why you should maintain this nutrient at healthy levels.

What is Vitamin B₁₂?

Vitamin B₁₀ otherwise known as Cobalamin is an essential vitamin, meaning the body cannot produce it on its own. Therefore, this nutrient must be obtained via the diet or from supplements.

Vitamin B₁₂ is the generic term for a group of several compounds that contain the mineral cobalt, known as cobalamins. Their unique role and structure separates them from other vitamins, as they are considered the most chemically complex of all vitamins.

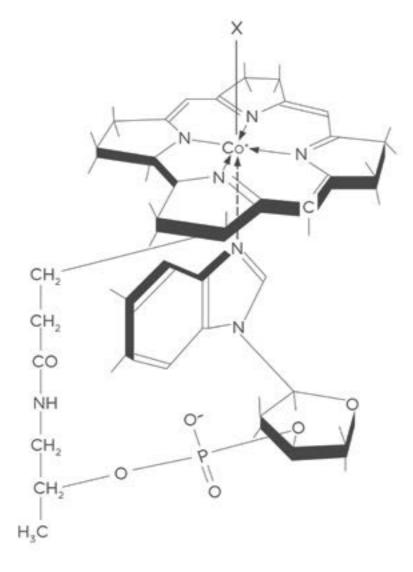


Figure 1. Chemical structure of cobalamin

Function

One of the most well-known functions of vitamin B₁₂ is the role it plays in the production of red blood cells. Low amounts of vitamin B₁₂ reduces the amount of red blood cells produced and can prevent them from being produced properly, resulting in large red blood cells called megaloblasts. This eventually develops into a disease known as megaloblastic anaemia.⁽¹⁰⁷³⁾

Vitamin B₂₂ also contributes to the normal functioning of the nervous system, psychological function, homocysteine metabolism, the immune system and contributes to the reduction of tiredness and fatigue.(1074, 1075)

Absorption of healthy levels of vitamin B₁₂ rely on the adequate supply of intrinsic factor (IF) produced by the parietal cells in the stomach lining, often in short supply in the elderly due to waning stomach acid secretions. Stress can also affect the production of stomach acid and hence intrinsic factor,⁽¹⁰⁷⁶⁾ as the body deprioritises digestion when responding to stress.

Benefits and Deficiencies

There are several claims stating that supplementing with Vitamin B₁₂ can provide health benefits. (1074, 1075) The truth, however, is that adequate amounts of Vitamin B₁₂ are essential to prevent any negative symptoms of the deficiency. Interestingly, any excess beyond enough Vitamin B., provides no added benefits.⁽¹⁰⁷⁷⁾ For example, when it is claimed that Vitamin B₁₂ can provide you with energy, this is only the case if a person is suffering from low energy levels because of a Vitamin B,, deficiency. When we discuss the health benefits, we are referring to having healthy levels of Vitamin B_{12} where no side effects are present.^(1075,7)

Healthy levels of vitamin B₁₂ have been found to:

- Help prevent Osteoporosis⁽¹⁰⁴¹⁾
- Help prevent macular degeneration⁽¹⁰⁴⁴⁾
- Help prevent neural tube defects (NTDs), a type of birth defect^(1041/2)
- Lower homocysteine levels, and therefore potentially lowering the risk of heart disease^(1036/41/42)
- Help prevent megaloblastic anaemia
- Protect the myelin sheath around nerves
- Support liver detoxification through the methylation pathway

Symptoms and side effects of vitamin B₁₂ deficiency include:

- Poor mental health
 ^(1036/41/42/44)
- Fatigue and lack of energy^(1036/42/44)
- Increased inflammation⁽¹⁰⁴¹⁾
- Shortness of breath⁽¹⁰³⁶⁾
- Headaches⁽¹⁰⁴⁵⁾
- Foggy headed/difficulty concentrating⁽¹⁰⁴⁴⁾
- Red inflamed tongue (Glossitis)⁽¹⁰⁴⁴⁾
- Pins and needles in the hands and feet (Paraesthesia)⁽¹⁰⁴¹⁾
- Muscle cramps⁽¹⁰⁴⁴⁾
- Gastrointestinal issues(1045)
- Erectile dysfunction⁽¹⁰⁴⁴⁾
- Anaemia^(1036/41/42/44)

• Support healthy cell division in the mucosal lining of the digestive tract and in the bone marrow

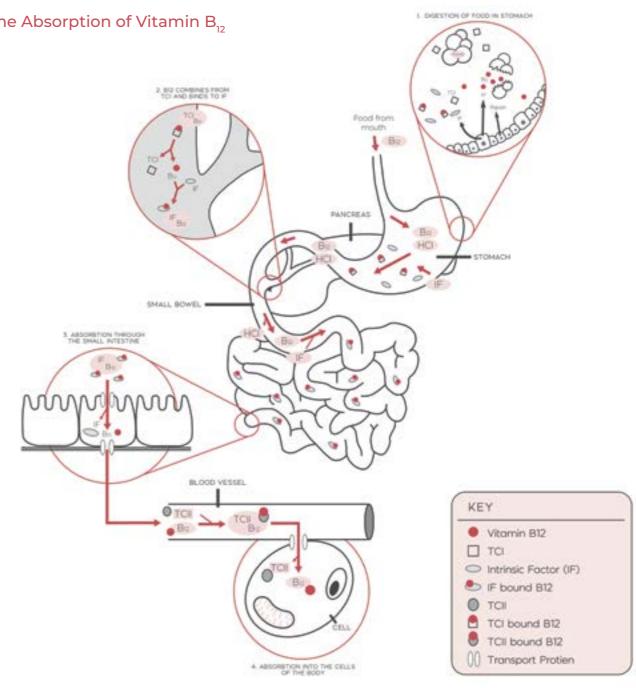
- Jaundice⁽¹⁰⁴⁵⁾
- Other neurological issues such as multiple sclerosis, demyelinating polyneuropathy (1044)

Prolonged deficiency increases the chance of other issues developing, such as heart failure due to anaemia or hyperhomocystineaemia, disabling neurological defects such as Subacute Combined Degeneration of the Spinal Cord (degeneration of the spinal column) or the development of autoimmune disorders such as rheumatoid arthritis, type 1 diabetes or Hashimoto's disease.⁽¹⁰⁴⁵⁾ Severe vitamin B₁₂ (or folate) deficiency can also lead to Megaloblastic anaemia. ^(1036/41)

Toxicity

In general, there is no tolerable upper intake level (UL) set for vitamin B₁₂.⁽¹⁰⁷⁹⁾ The UL is the maximum daily dose of a nutrient that is not likely to cause adverse side effects. Vitamin B₁₂ is generally considered safe in high doses as it is a water-soluble vitamin, and any excess is excreted in your urine.

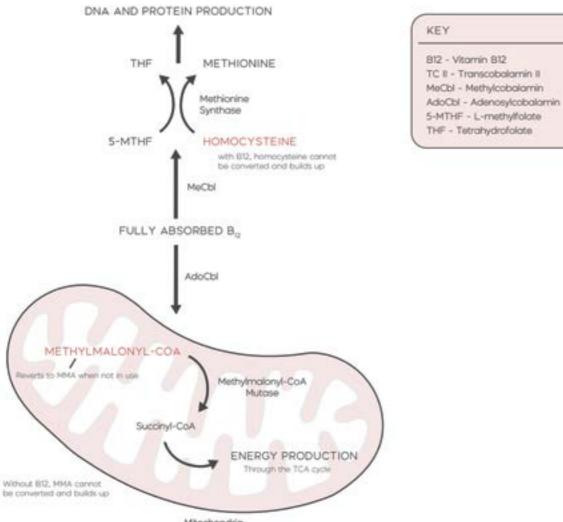
High doses for the purpose of treating vitamin B₁₂ deficiency are considered safe.


The Absorption of Vitamin B₁₂

The way in which vitamin B₁₂ is absorbed into the body is unique. Unlike other B vitamins which are easily absorbed from the small intestine, vitamin B₁₂ requires the help of various transport proteins to deliver it safely to the cells.⁽¹⁰³⁶⁾

This process starts with B₁₂ binding to a glycoprotein knows as transcobalamin I which is produced by the salivary glands and protects the B₁₂ from the acidic environment in the stomach. Once in the stomach the B_m is released from its dietary protein by hydrochloric acid and the enzyme, pepsin, passing safely through to the less acidic environment of the small intestine. Here, the transcobalamin I is digested by pancreatic enzymes and the vitamin B., binds to another transport protein called Intrinsic Factor, which is produced by the cells in the stomach lining.

Once safely inside the cells of the small intestine, the vitamin B₁₂ binds to the protein holotranscobalamin II or Holo-TC and it is now that the B₁₂ becomes "active". It then passes into the liver where it can be stored and released into the bloodstream where it is delivered to the various tissues in the body.⁽¹⁰³⁶⁾

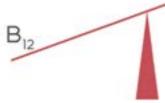


Absorption of vitamin B₁₂

Factors that have an effect on B₂₂ absorption include stomach pH, acid and pepsin levels in the stomach, secretions from the pancreas and liver processes such as bile production.⁽¹⁰⁴²⁾

Minute amounts of vitamin B_{12} can be absorbed through the gut membrane, estimated at approximately 1-2%. In people with pernicious anaemia (lacking intrinsic factor) this is the only way to absorb vitamin B₂, from ingestion. This requires them to supplement with mega doses of B₂, or receive intra muscular injections to obtain adequate amounts of vitamin B₁₂ to maintain healthy levels.(1036)

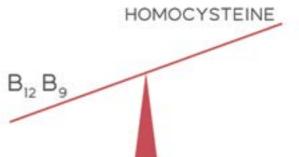
The Role of Vitamin B₁₂ in the Body


Mitochondria

Vitamin B₁₂ has two biologically active forms; adenosylcobalamin and methylcobalamin both of which have different roles within the human body.

- · Adenosylcobalamin (AdoCbl) is stored in the liver and its main site of action is in the mitochondria, the powerhouse of the cell. It is a cofactor, a helper molecule, for a selection of enzymes that are involved in energy production and carbohydrate, protein, and fat metabolism. Its key role is as a cofactor for succinyl-CoA from L-methylmalonyl-CoA as part of a biological process called the tricarboxylic acid cycle (TCA), also known as the citric acid cycle or the Krebs Cycle, which creates energy for the body.⁽¹⁰⁸⁰⁾
- · Adenosylcobalamin is also a cofactor for the production of myelin. The myelin sheath is a is a protective layer that's found on nerve cells, acting as an insulator, allowing electrical impulses to travel efficiently, and maintaining the strength of the impulse. Adenosylcobalamin deficiency can cause demyelination, damage to the myelin sheath, which can slow or even stop nerve impulses. ^(1036/41) Therefore, vitamin B₁₂ deficiency can lead to demyelination and raised MMA levels resulting

in neurological disorders. (1036)


Methylmalonic acid (MMA) is a chemical that is created during the TCA. Without sufficient levels of active vitamin B₁₂, the conversion of L-methylmalonyl-CoA to Succinyl-CoA is impaired and levels of

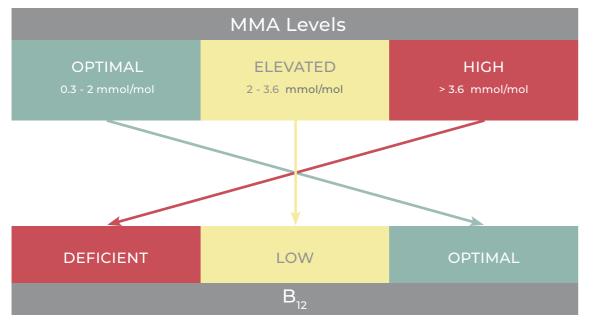
methylmalonic acid (MMA) rise. ⁽¹⁰⁴¹⁾ Elevated levels of MMA may damage nerve cells ⁽¹⁰³⁶⁾ and some of the symptoms of vitamin B₁₂ deficiency may arise.

· Methylcobalamin (MeCbl) functions directly within the cells and is used as a coenzyme for the conversion of homocysteine to methionine. As well as breaking down the amino acid homocysteine, elevated levels of which are associated with cardiovascular disease, this conversion has implications in other pathways including the reactivation of folic acid, without which the folic acid cannot be fully affective, leading to anaemia, impaired cell replication, and damage to the nervous system. It is also involved in producing the precursor of a compound called SAM, which plays a crucial role in detoxification, the synthesis of neurotransmitters and gene regulation, and a shortage of which can lead to neurological disorders. (1040/1041/1063)

Declining levels of active vitamin B₁₂ may result in elevated levels of homocysteine. However, vitamins B_{12} (folate) and B_{22} work synergistically with vitamin B_{12} to break down homocysteine. Therefore, testing for elevated homocysteine should not be used in isolation to assess active vitamin B₁₂ deficiency.

High levels of homocysteine are associated with increased risk of cardiovascular diseases such as thrombosis or coronary artery disease, as well as other diseases such as Alzheimer's and osteoporosis⁽¹⁰⁴¹⁾ and is known to be a cause of depression.⁽¹⁰⁶³⁾

Vitamin B


Vitamin B₁₂ and Vitamin B₂, which is also known as folate, are interconnected. Folate is another essential B vitamin, meaning your body cannot produce it and you need to get it from your diet. Like vitamin B., it plays key roles in the synthesis of DNA and due to its similar metabolic pathways deficiency of folate also leads to an increase of homocysteine. The two vitamins complement each other so well that one can be used to reduce the symptoms of a deficiency of the other. ⁽¹⁰⁴¹⁾

Vitamins B_c

Like Vitamin B₁₂ and folate, low levels of vitamin B₆ can raise homocysteine. However, having an isolated vitamin B_c deficiency is rare and usually occurs with a deficiency of other B vitamins, particularly folate and B₁₂.

Testing Vitamin B₁₂ levels

1. Methylmalonic acid (MMA). Measuring MMA is considered the most sensitive test for measuring your B₁₂ levels, this is because only vitamin B₁₂ that has been fully absorbed into the body can lower MMA. The absorption of B₂₂ is a multistage biological process needing the help of several other chemicals and therefore measuring MMA in either urine or blood is often called a functional B₁₂ test, as this test can highlight if there are any absorption issues.

References ranges displayed above are for a urine test

MMA is therefore more likely to detect B₁₂ deficiencies as well as B₁₂ low levels.

Whilst MMA can also be elevated if kidney function is impaired or in the case of hypovolemia (where there is a decreased volume of blood circulating around the body), the higher your MMA, the lower your vitamin B₁₂

Other ways to test for B₁

- Serum B₁₂ Serum Vitamin B₁₂ is the amount of vitamin B₁₂ in your blood. Serum B₁₂ is not it doesn't account for your vitamin B_{12} 's metabolism/absorption past this point.⁽¹⁰³⁶⁾
- 2 Active B₁₂ (Holo-TC) Active B₁₂ is the measurement of vitamin B₁₂ bound to Holo-TC. Measuring better at detecting subclinical (low but not deficient level) vitamin B₁₂ deficiencies.⁽¹⁰³⁶⁾
- although rare in isolation, low levels of B_c. Genetic mutations to the gene known as MTHFR, homocysteine levels.
- MCV (Mean Corpuscular Volume) test MCV is a test that measures the average size of your red blood cells. As a person becomes deficient in vitamin B₁₂ or folate, their red blood cells increase in size eventually leading to megaloblastic anaemia. Whilst this test can identify that a deficiency may be present, it will not provide an accurate estimation of the severity or differentiate between vitamin B₁₂ and folate.^(1036/41)

Clinical Deficiency vs Subclinical Deficiency

Traditionally when people talk about a deficiency they have been talking about clinical deficiency. This is a deficiency that has progressed to noticeable symptoms and negative side effects.

Subclinical deficiency, however, is at an earlier stage with no obvious symptoms, and the ones that may be present are non-specific to the nutrient e.g. fatigue. Catching a deficiency at the subclinical stage allows a person to address the issue and potentially prevent the development of a clinical deficiency.

In the case of our urinary B₁₂ test, a deficient result is a clinical deficiency, and the low results is a subclinical deficiency.

Where to get vitamin B_{12} ?

Vitamin B₁₂ is produced from certain strains of bacteria since animals and plants are unable to produce it. For the average adult we recommend (based on EU guidelines) consuming 4 µg a day of vitamin B₁₂ (1046)

Diet

Vitamin B₁₂ is usually obtained from animal-based sources where the synthesised B₁₂ is

considered a particularly accurate method of determining your B₁₂ levels. This is due to the fact

this provides an accurate measurement of a person's B₁₂ levels, accounting for metabolism and absorption. Whilst Active B₁₂ and MMA are both considered good markers, MMA is considered

Homocysteine – Like MMA, homocysteine can be tested for functional B₁₂ levels, similarly, rising as B₁₂ levels deplete. However, homocysteine levels also raise with low levels of folate (B₂), or which has an impact on the conversion and utilisation of B_c , B_o and B_{ra} , which can lead to high

```
transferred and accumulated in the tissues of animals. Red meat and fish/shellfish are known
```

for their high amounts of vitamin $\rm B_{12}$. Other meats, dairy products, eggs, clams and liver are also good sources.

Sources of vitamin B_{12} for vegetarians and especially vegans are much more limited. Whilst most plant based foods have none present, some mushrooms and seaweed/algae contain some amounts of vitamin B_{12} .⁽¹⁰⁵³⁾ For example, Nori, a type of seaweed/algae commonly used in sushi, is considered a good source of vitamin B_{12} for vegetarians/vegans.⁽¹⁰⁷¹⁾ There are also some foods fortified with vitamin B_{12} , these include some breakfast cereals, milk alternatives and nutritional yeast.

Certain fermented foods are also known to be natural sources of vitamin B_{12} but amounts can vary quite significantly from product to product, ranging from virtually none to huge quantities depending on the fermentation process.⁽¹⁰⁷¹⁾

Below is a selection of food with their average vitamin B_{12} content. By seeing their amounts per portion, you can see the effect these foods have on your B_{12} levels.⁽²⁰³⁷⁾ Please note that this does not show any of the other nutritional values the food may provide.

Food	Vitamin B12 per Portion (µg)	%NRV	Portion Size	Source Type
Kombucha (black tea) ⁽¹⁰⁷⁰⁾	0 - >240	0 - > 10,000	100 mL	Fermented product
Lamb liver	76.5	3,188	85g	Meat
Beef Liver	70.7	2,944	85g	Meat
Clams	17	708	85g	Seafood
Nutritional yeast (fortified)	8.3 - 24	346 - 1,000	60 mL	Fortified food
Sardines (canned)	6.7	279	1 tin (75g)	Seafood
Nori (seaweed) ⁽¹⁰⁷¹⁾	3.1	129	4g	Algae
Sauerkraut/kimchi ⁽¹⁰⁷¹⁾	0 - 3	0 - 125	30g	Fermented product
Salmon	2.6	108	85g	Seafood
Tuna (canned)	2.5	104	85g	Seafood
Beef (minced) 15% fat	2.4	100	85g	Meat
Shiitake mushroom (dried) ⁽¹⁰⁷¹⁾	1.7	70	30g	Mushroom
Milk 2%	1.3	54	250 mL	Dairy
Plain fat free yoghurt	1.0	43	170g	Dairy
Breakfast cereals (fortified)	0.6	25	30g	Fortified food
Cheddar cheese	0.5	19	43g	Dairy
Egg	0.5	19	1 large egg	Animal product
Turkey (breast)	0.3	14	85g	Meat
Tempeh	0.1	3	125 mL	Fermented product

2 Supplements

It can be difficult for some people to regularly consume adequate amounts of vitamin B_{12} from the diet alone, particularly for vegetarians or vegans. Fortunately, vitamin B_{12} is easily accessible in the form of food supplements.

A common form of vitamin B₁₂ used for supplements (and for fortifying foods) is called cyanocobalamin. This is a synthetic/manufactured form of vitamin B₁₂ that converts into the

natural forms once absorbed into the body. Supplements of the natural forms of vitamin $B_{12'}$ methylcobalamin and adenosylcobalamin, are also available. As supplements are produced from bacteria, they are considered vegan.

Our Recommendations ⁽¹⁰⁴⁶⁾		
0 – 6 months	0.4 µg	
7 months – 7 years	1.5 µg	
7 – 10 years	2.5 µg	
11 – 14 years	3.5 µg	
15 + years	4 µg	
Pregnancy	4.5 µg	
Lactation	5 µg	

3 Injections

Intramuscular injections (injections directly into the muscle) bypass the gut absorption process that occurs when consuming vitamin B_{12} orally. Injections rapidly increase vitamin B_{12} levels in those who are deficient and are an effective way of managing a person's vitamin B_{12} levels in people with absorption issues. Vitamin B_{12} is usually injected in a specialised form known as hydroxocobalamin as it is retained more easily by the body, however cyanocobalamin can also be used.⁽¹⁰³⁶⁾

Injections of vitamin B_{12} can be given to individuals with vitamin B_{12} deficiency by medical practitioners such as doctors, nurses and pharmacists. A deficiency or absorption issue should be identified before any injections of B_{12} are administered. Whilst the most effective method of increasing vitamin B_{12} quickly, some people do experience side effects such as:- ⁽¹⁰⁵⁰⁾

- Skin Irritation/Skin Conditions e.g. Acne⁽¹⁰⁴⁸⁾
- Headaches
- Dizziness and Nausea
- Diarrhoea
- Fatigue
- Tingling sensation in the hands or feet

Recommended Dosages

Whilst the UK recommendation for B_{12} supplementation is up to 1.5ug, we recommend daily AI (adequate intake) doses of vitamin B_{12} based on the EU Nutrient Reference Values,⁽¹⁰⁴⁶⁾ listed below. These are the amounts recommended to people to maintain adequate vitamin B_{12} levels for healthy individuals with no known vitamin absorption/metabolism issues.⁽¹⁰⁴⁶⁾

Age, BMI, sex, smoking, alcohol intake, dietary requirements, medical conditions, and medications may affect your levels and how much is required to maintain optimum levels.

People with a vitamin B_{12} deficiency are usually given doses of 1,000 µg by way of injection or oral supplementation for 1-2 weeks to treat the initial deficiency state.⁽¹⁰³⁶⁾ We do not recommend supplementing at this level for people with adequate levels of vitamin B_{12} with no history of

deficiency related issues. Please contact your health professional for further advice.

Who is at risk of Vitamin B₁₂ deficiencies?

There are multiple reasons that a person may become deficient in Vitamin B_{12} : -

- Vegan or vegetarian Vegetarians and especially vegans are at high risk of vitamin B., deficiency, as dietary vitamin B₂₂ is usually obtained from animal-based products and few plant sources contain vitamin B₁₂. Vegan sourced vitamin B₁₂ is largely limited to food that has been fortified and with supplementation. In the UK, at least 11% of vegans are deficient in vitamin B₁₂.⁽¹⁰⁵⁴⁾
- Pregnancy/breastfeeding Vitamin B₁₂ is a crucial nutrient for the development of a child, and when pregnant or breastfeeding the amount of vitamin B₁₂ is shared between the mother and the child. Inadequate intake of vitamin B₁₂ can quickly deplete the mother's stores of vitamin B₁₂. During the pregnancy this increases the chance of birth defects such as neural tube defects (NTDs).⁽¹⁰⁴¹⁾ Children of deficient mothers are either born deficient or at a very high risk of becoming deficient.⁽¹⁰⁷⁸⁾
- · Hormonal birth control Birth control has been found to decrease the body's ability to absorb vitamin B₁₇. However, whilst lower, the decrease isn't enough to push someone into a full deficiency by itself.⁽¹⁰⁸¹⁾
- Age Absorbing vitamin B₁₂ becomes increasingly difficult with age, as it becomes more difficult for a person to digest food and the chance of other gut based issues increases.⁽¹⁰⁸²⁾ Older age is one of the leading causes of vitamin B₁₂ deficiency. In the UK, 5% of people aged 65-74 years are deficient, and over 10% for people aged 75 years and over.⁽¹⁰⁷²⁾ However, more recent studies have found that it could be much higher than this.
- · Pernicious anaemia Pernicious anaemia is an autoimmune disease that targets intrinsic factor and the cells that produce it. It can severely reduce the amount of intrinsic factor. The gut is then unable to absorb vitamin B₁₂ quickly leading a person to develop megaloblastic anaemia. A person with pernicious anaemia usually requires regular injections of vitamin B₁₂ and/or extremely large doses of vitamin B₁₂. People with a family history of pernicious anaemia or another autoimmune disease are more likely to develop it.⁽¹⁰⁵⁵⁾
- Medical conditions The following diseases are known to have an effect on vitamin B₁₂ levels:-⁽¹⁰³⁶⁾ Chronic Gastritis Atrophic Gastritis Bacteria Overgrowth (SIBO, H. pylori infection) Irritable bowel syndrome (IBS) Chronic acid reflux Crohn's Disease Ulcerative Colitis Other gastric diseases Pancreatic disorders Multiple Sclerosis Celiac Disease Kidney Diseases Liver Diseases (can disrupt the storage of vitamin B₁₂) Human immunodeficiency viruses (HIV) Aplastic Anaemia Certain Cancers - Multiple myeloma, myelodysplastic syndrome Rheumatoid Arthritis⁽¹⁰⁵⁶⁾

Psoriatic Arthritis⁽¹⁰⁵⁶⁾ Hashimoto's⁽¹⁰⁵⁷⁾ Graves⁽¹⁰⁵⁷⁾ Diabetes Graft versus host Disease (GvHD)⁽¹⁰⁴¹⁾ Vitiligo⁽¹⁰⁶⁴⁾

- · Gastric surgery Surgeries such as gastrostomies, gastric bypasses or gastric stapling reduce the amount of acid, pepsin and intrinsic factor required for the absorption of vitamin B_{1,1},⁽¹⁰⁴²⁾
- Parasitic infestation Sometimes a vitamin B₁₂ deficiency can be caused by a parasitic infestation. Creatures such as the Fish Tapeworm will absorb the vitamin B₁₂ intended for the host.⁽¹⁰³⁶⁾
- Medication The following medication is known to reduce vitamin B₁₂ levels:-⁽¹⁰³⁶⁾ Metformin (Diabetes medication) Proton Pump Inhibitors (PPIs) - e.g. Omeprazole, Esomeprazole Antacids Nitrous oxide Colchicine Antibiotics - e.g. neomycin, L-Carnitine Sodium bicarbonate
- Smoking Smoking is widely known to reduce the amount of vitamins your body absorbs, including vitamin B₁₇. The cyanides in cigarette smoke become detoxified when reacting with the active B_{12} turning it into inactive B_{12} and lowering your active B_{12} levels.^(1066/7)
- Drinking Alcohol is also known to reduce the absorption of B vitamins including B₁₂. Even moderate drinking can result in lower vitamin B₁₂ levels.⁽¹⁰⁶⁸⁾ Alcohol-based liver damage is also known to cause the liver to fail in an attempt to hold on to the vitamin B₁₂ stores it has, this can result in a very serious deficiency.⁽¹⁰⁶⁹⁾

Summary

Whilst estimates of B₁₂ deficiency vary, it is evident that this is a common issue globally and is impacted by many factors including age, diet and lifestyle. What is particularly concerning is that up to 40% of people in the UK have subclinical vitamin B₁₂ levels,.⁽¹⁰⁴⁷⁾ This hidden condition may be affecting the quality of life of many people without them knowing it's linked to a vitamin B₁₂ deficiency.

B₂ is an important and essential vitamin, meaning that your body cannot make it and it can only be obtained from your diet or by taking supplementation.

Having adequate B₁₂ levels is important for all individuals to function and is particularly important during pregnancy.

Taking vitamin B₂₂ supplementation or injections will only give you an energy boost if you have fatigue from low levels of B₁₂. If you have sufficient vitamin B₁₂ levels, supplementation or injections will bring no extra benefit.

SureScreen Health, Morley Retreat, Church Lane, Morley, Derbyshire, DE7 6DE

Tel: 01332 292003 Email: scientifics@surescreen.com surescreenhealth.com